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Quantum motion of particles in random dynamic fields and 
quantum dissipation: Schrodinger equation with Gaussian 
fluctuating potentials 
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Institute of Radio Engineering, Electronics and Automation, 117454 Moscow, USSR 

Received 28 July 1986, in final form 4 February 1987 

Abstract. The Schrodinger equation with Gaussian dynamic fluctuating potentials is con- 
sidered. This model gives a convenient example of an open quantum system coupled with 
a given external environment. The evolution equations for averaged correlators are derived 
and it is shown that a system coupled to a thermoequilibrium environment tends asymptoti- 
cally with time to a thermodynamic density matrix. At high temperatures the quantum 
evolution equation for the density matrix can be approximated by the quasiclassical 
Fokker-Planck equation. The generalisation for multiparticle systems is also given. The 
results are illustrated by the particular examples of coupling with phonons and of two-level 
systems. Finally, it is shown how the problem can be reformulated in terms of continuous 
stochastic evolution in the space of $ functions and a corresponding functional formalism 
based on the continuous Fokker-Planck equation in the space of $ functions is presented. 

1. Introduction 

A variety of physical situations can be considered within the framework of the following 
simplified treatment: a small subsystem exists separately within a large system and the 
latter is treated as an environment with fixed given properties, while the influence of 
the small subsystem on the environment is neglected. Examples of this situation are 
plentiful and particular realisations may be illustrated by adsorbed atoms on a surface 
interacting with a bulk of a pattern, by electrons trapped in potential wells in condensed 
media, by atomic spectra of ions in turbulent plasma, etc. In  its general form the 
problem is formulated as the description of an open quantum system in a given 
environment. Because a large system has many degrees of freedom, the interaction of 
large and small systems can be treated statistically. 

The most advanced studies of this problem are based on modelling of the medium 
in the form of a bath of oscillators and subsequent description of the system either in 
terms of statistical mechanics or with the use of the Feynman influence functional 
method (Feynman and Vernon 1963, Feynman and Hibbs 1965, Ford er a1 1965, 
Caldeira and Leggett 1983a, b, 1985, Hanggi and Mojtabai 1982, Schmid 1982, Grote 
and Hynes 1982, Mel’nikov and Meshkov 1983, Cortes er a1 1985, Riseborough et a1 
1985). The major limitation of this approach consists in formulating all results in terms 
of various spectral oscillator densities, while direct correspondence of these variables 
with observable quantities must be established additionally. 

Other theories are based either on semiphenomenological generalisations of the 
Schrodinger equation (Kostin 1972, Yasue 1978, Hasse 1979, Diosi 1986) or on the 
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quantisation of frictional force (Dekker 1981 and references therein, Ghosh and Hasse 
1981, Nemes and de  Toledo Piza 1983). Despite the many interesting results obtained 
within such an approach, its physical status still remains mainly heuristic. 

Our investigation is based on a model of the Schrodinger equation with Gaussian 
dynamic fluctuating potentials. The white-noise version of this model has been con- 
sidered previously by Jayannavar and Kumar (1982). We shall show, however, that 
finite-time correlations play an  important role, especially in thermodynamic problems. 
As all results obtained using the Schrodinger equation can be reformulated in path 
integral language (Feynman and Hibbs 1965), this approach has many features in 
common with the Caldeira and  Leggett (1983a, b)  theory. Though both models are 
mathematically equivalent, the direct use of the Schrodinger equation is simpler in 
many aspects. Additional attractive features are the use of a purely quantum description 
and  well defined physical quantities from the very beginning. This permits us to apply 
such general results as the quantum fluctuation-dissipation theorem or  to relate the 
field correlators with the corresponding Green functions which are calculated straight- 
forwardly (see, e.g., Abrikosov et a1 1963). 

The Schrodinger equation with Gaussian dynamic fluctuating potentials gives the 
natural quantum generalisation of the classical Langevin scheme which can be formu- 
lated in terms of the following equations: 

dv 
d t  a r  

m-=- aU0- yu+ f(r, t )  

where U ( r )  is the regular static potential and f(r, t) is the so-called random force 
determined by correlators: 

Here r , k  is a symmetric constant tensor. In the case of thermoequilibrium fluctuations, 
its structure is determined by the classical fluctuation-dissipation theorem. The white- 
noise approximation 6( t - t') leads, however, to negligence of quantum discrete eigen- 
frequency properties in view of the uncertainty principle for energy and  time, 

AErcorrb h (1.4) 

where rCorr is the characteristic correlation time of a noise and the energy AE corre- 
sponds to transitions between discrete energy levels which determine the stochastic 
evolution of a system. Thus, stochastic dynamics corresponding to (1.2) and (1 .3)  will 
really be quasiclassical even for the Schrodinger equation and  finite time correlations 
play an  important role in the quantum description (see also 9 9  4 and 6) .  

The layout of the paper is as follows. In 9 2 we derive the averaged evolution 
equations for various correlators and then the structure of the equations and their 
physical meaning is illustrated in § 3 with the particular example of coupling with 
phonons. In § 4  we shall prove the general theorem on the asymptotic evolution to 
the thermodynamic density matrix of any system coupled with thermoequilibrium 
fluctuations of potentials. The particular example of such an  evolution is considered 
in § 5 with the use of a two-level system. The quasiclassical Fokker-Planck equation 
is derived in § 6. The generalisation to multiparticle systems is given in § 7, and in § 8 
we show how the problem can be reformulated in terms of stochastic evolution in the 
space of i,b functions. The discussion is based on the corresponding continuous 
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Fokker-Planck equation in the space of $ functions. The necessary comments on the 
structure of the continuous Fokker-Planck equation are presented in appendix 1, while 
appendix 2 is devoted to one special example. 

2. Evolution equations for averaged correlators 

2.1. Evolution of the averaged $ function 

The significance of the problem discussed in this section is twofold. First, it is interesting 
as a rather general and convenient example of an open quantum system coupled to a 
thermostat, but we should note that fluctuations may not be necessarily at thermoequili- 
brium and may correspond also to artificial sources of stochastic radiation (see, e.g., 
Akhmanov et a1 1981). 

We begin with the simplest one-particle Schrodinger equation of the form 

a$ h2  a2$ 
a t  2m ar2 

ih-= -- -+ U(r)$+ V(r, t ) $  

= A ( r ) + +  V(r, t)+. (2 .1 )  

Here V(r )  is a regular static potential (corresponding, e.g., to the potential well of a 
trap) and V(r, t )  is a Gaussian dynamic random potential. The potential V(r, t )  can 
be characterised in several equivalent ways. The most usual is to characterise it by 
two correlators: 

(V(r, t ) )  = 0 (2 .2)  

( V( r, t )  V( r', 2 ' ) )  = r( r - r', t - t ' )  ( 2 .3 )  

where, as in the Gaussian case, the correlators of the higher orders are expressed 
through various sums of products of pair correlators. The potential V( r, t )  is assumed 
to be classical, commuting at various moments of the time function (i.e. the c number; 
the quantum generalisation will be given below), and for simplicity correlations are 
taken to be stationary and spatially homogeneous (r  in equation (2 .3 )  depends only 
on ( r  - r') and ( t  - t)). The same correlators can be obtained with the use of the 
characteristic functional 

0 0 
= exp( -; I' d7 { '  d.r' 1 ddr [ ddr' A (r, T ) r (  r - r', T - + ) A (  r', 7') 

(2 .4 )  

by corresponding functional differentiation with respect to A (r, T )  and then tending 
the arguments A (r, T )  to zero, i.e. 

etc. The problem is: how do potential fluctuations influence the evolution of the II, 
function? 
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It is convenient to transform equation (2.1) to an interaction representation (details 
of the mathematical technique used below can be found in Bogolyubov and Shirkov 
(1959), Abrikosov et a1 (1963) and Itzykson and Zuber (1980)): 

(2.6) $ ( r ,  t )  = exp(- iA(r) t /h)G(r ,  t )  

where 

Pint) (r ,  t )  = e x p ( i A i t / h ) ~ ( r ,  t )  exp(- i l j t /h ) .  

The formal solution of equation (2.7) with given initial conditions has the form 

Here f is a chronologisationl operator. The need for it is dictated by the non- 
commutivcy of the operators V"""(r, 7)  at different moments of time. The evolution 
operator U ( r ,  t )  is equal by definition to 

(2.10) 

where the operator f orders various products of ?(lnt)(r, t )  with an increase in time, i.e. 

(2.1 1 )  

and the time ordering in terms of higher order is defined analogously. Let us assume 
that, at the initial moment t = 0, the state $('I( r )  does not depend on the random 
potential V ( r ,  t )  (this means equivalently that all exact information about the system 
is known at t = 0). As can be seen fcom equation (2.9), the problem is then reduced 
to averaging the evolution operator U ( r ,  t )  on the ensemble of realisations of V ( r ,  t ) .  
This can be performed with the use of Wick's theorem. All odd terms will be equal 
to zero after averaging while, for Gaussian statistics, all even terms are expressed by 
the various products of pair correlators, i.e. 

(f?( 1 )  ?(2) ?(3) ?(4)) 

=(f?(l)?(2))(f?(3)?(4))+(f?(l)?(3))(f?(2)?(4)) 

+(PO( 1 )  ?(4))( ??(2) ?(3)) (2.12) 

etc. It is important that oper;tors commute under f ordering. Then after averaging 
the term with 2n operators VCint)(r, t) gives (2n - l ) ! !  (where (2n - l)!! = (2n - 1 )  x 
(2n -3) . . . 1 )  identical additives. Using the equality 

( 2 n - l ) ! !  1 -- - 
(2n)! 2"n! (2.13) 
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the various terms can be easily summed and the averaged evolution operator can be 
rewritten finally in the form 

This gives the corresponding evolution equation for ($( r, t )): 

(2.14) 

(2.15) 

or equivalently (see equations (2.6)-(2.8)) 

-+ I o r d 7 ( V ( r ,  t )  exp(- i l j (r ) ( t -T) /h)V(r ,  7 )  

x exp(ifi(r)(t  - ~ ) / f i ) ) ( + ~ ( r ,  1 ) ) .  (2.16) 

Equation (2.16) can also be derived using more traditional statistical methods. 
There is an important theorem for Gaussian correlations (Furutsu 1963, Novikov 1964, 
Donsker 1964) which states 

( V ( r l ,  t , ) R {  V ( r ' ,  ~ ' 1 ) )  

(2.17) 

for t ,  s t. Here R (  V ( r ,  7) )  is a functional depending on V ( r ,  T )  either explicitly or 
implicitly. Applying this theorem to equation (2.7) one obtains 

On the other hand, one obtains from equation (2.9) 

(2.18) 

(2.19) 
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Here E is an jnfinitesimally small positive constant and &'(r ;  t, 7) is the operator 
reciprocal to U (  r ;  t ,  7). We have also used the multiplicative property of the evolution 
operator: 

(2.20) i r ( r ;  1, t o ) =  i r ( r ;  r, t , ) O ( r ;  t , ,  t o )  

for any moment f > t ,  > to and the causality principle 

if T >  t .  Substitution of (2.19) into (2.18) gives 

x ( C ( r ;  t, T ) 6 ( r - r f ) C - I ( r ;  t, T)&, t ) )  

(2.21) 

(2.22) 

1 
= - 5;i Io' d7( @ i n t ) (  r, t )  r, T ) ) ( $ (  r, t ) )  

which coincides with (2.15). 

'zero-dimensional' Schrodinger equation 
It is useful to analyse this result with a more trivial example. Let us consider the 

This gives immediately 

+( t )  = exp( -i [ ' d.r V (  T)/ h )  
0 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

The action of any elementary random constituent Vo6( t - to)  leads to a corresponding 
jump in the phase exp( -i Vo/ h )  ( t  > to). We see that various jumps for to < t are piled 
up to the time t. It is important that they do not smear with time. This leads to phase 
shifts that are non-local in time existing at all moments t > to and it explains the 
meaning of equations (2.25) and (2.26). In the multidimensional case the phase shifts 
local in space and time will be partially smeared due to the action of g(r)  and, in 
fact, the locality of evolution in time will be partially lost in view of the action of the 
operator exp(ifi(r)(t  - 7 ) / f i )  on ( + ( r ,  t ) )  (see equation (2.16)), but the situation 
remains generally unchanged. 

2.2. Stochastic evolution of the density matrix 

The other important quantity is the density matrix ( + * ( r 2 ,  t ) + ( r l ,  f ) ) .  Defining 

+*(r ,  t )  =exp(it.i(r)t/h)J*(r, t )  (2.27) 
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the unaveraged evolution equation can be written in the form 

where r l ,  t )  is determined by equation (2.8) and 

Q*(int) ( r ,  t )  = exp(- i f i ( r ) t /h )V(r ,  t )  exp( i f i ( r ) t / f i ) .  

The solution of equation (2.28) with initial conditions is equal to 

$*(r2, t)$(r1, t )  

= f exp( -+ lo' d7( Q(Int)(r 1 ,  7 )  - Q*(lnt) 

which gives, analogously to (2.10)-(2.15), the averaged evolution equation 

%*(r2, a t  t)$(r1, t ) )  

(2.28) 

(2.29) 

(2.31) 

where p$)  is a constant matrix. 
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2.3. Generalisation to quantised jluctuations of fields 

Equation (2.32) is valid for classical fields V ( r ,  t ) .  The modification to quantised fields 
$(r ,  t )  is very slight. In the spirit of secondary quantisation, the complex conjugate 
4*(r ,  t )  should be replaced by the Hermitian conjugate +'(r, t ) .  The corresponding 
Schrodinger equation has the form 

(2.34) 

(2.36) 

Here all operators act from right to left. The corresponding solution o,f equation (2.36) 
can be written with the use of the antichronologisation operator T' (cf Schwinger 
1961, Keldysh 1964): 

(2.37) 

The action of the operator ?t is reciprocal to that of ? (see equation (2.11)). The 
averaging gives the evolution equation 

(2.38) 

Thus, in the more exact form, the second and third averaged stochastic operators in 
equation (2.32) should be treated as operators of the type 

l e x p ( - i f i ( r 2 ) ( r - 7 ) / f i ) ~ ( r 2 ,  T) e ~ ~ ( i f i ( r 2 ) ( t - 7 ) / h ) c ( r , ,  r ) )  

acting from right to left. It can be proved that this leads to permutation of creation 
and annihilation operators for the quantised field o ( r ,  t )  with respect to the usual 
order of action from left to right and ensures the asymptotic evolution to the 
thermodynamic density matrix in the case of coupling with thermoequilibrium 
fluctuations. 

2.4. White-noise approximation 

Equations (2.16) and (2.32) are simplified when the characteristic correlation time in 
the correlator (2.3) is much less than the eigenfrequencies of the operator fi( r ) /  h. In 
this case all exponent operators may be neglected and the correlator (2.3) can be 
approximated by white-noise correlations: 

(2.39) 
J -m 

The corresponding equations (2.16) and (2.32) are equal in this approximation to 

(2.40) 
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(2.41) 

The last equation coincides with that obtained previously by Jayannavar and Kumar 
(1982). 

The equations for higher-order equal time correlators and for correlators taken at 
different times can be derived analogously. We do not write them down explicitly 
because the algorithm is quite clear. 

1 

h + 7 ( r ( ” ( r l  - r+r‘oi(o))(+*(rz ,  t ) + ( r l ,  t ) ) .  

2.5. The response to an external non-stationary deterministic Jield 

Here we consider the situation where a regular non-stationary part is added to the 
regular static potential in equation (2.1) so that the full regular deterministic potential 
and Hamiltonian are equal to 

(2.42) 

(2.43) 

where ecf’( r, t)Acorresponds to a regular non-stationary external field. In this *case the 
Hamiltonian H(r)  in equations (2.16) and (2.32) must be replaced by H‘d’(r, t )  
and the operators exp(-ifi(r)(  t - T ) /  h ) ,  e x p ( i g (  r)(  t - T ) /  h )  must be replaced by 
evolution operators, 

Oid i ( r ;  t, 7 )  = T A exp ( - i dT‘ r, T ’ ) /  h (2.44) 

and fi‘dit(r; t, T ) ,  where fi(d’t(r; t, T )  is the Hermitian conjugate to f icdi(r ;  r ,  T )  and 
f corresponds to chronologisation ordering. If the field is weak and ( p(”( r, h, 
then the deterministic evolution operators can be approximated by 

f i (d)(r ;  t, T)=exp(- iA(r ) t /h )  1-- d r ’ e x p ( i k ( r ) T ’ / h )  ( a I: 
(2.45) 

r;  t, 7 )  5 exp( - iA( r) T /  h ) 1 + - d 7’ exp( i f i (  r )  T’/ h ) ( r I: 
x v“’(r, 7’) exp(-iA(r)+/ii)  exp( i f i ( r ) t /h ) .  (2.46) 

The formulae (2.45) and (2.46) are solutions to the problem of linear response to a 
weak non-stationary regular external field. 

) 

3. Example: coupling with phonons 

Stochastic evolution should be subject to some general physical principles. For 
example, the classical Fokker-Planck equation describing the motion of a particle 
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coupled with an equilibrium thermostat must give, in asymptotics, the Maxwell distribu- 
tion. This condition restricts the possible form of the equations. If, e.g., diffusion in 
momentum space is defined, then viscous terms are determined unambiguously. The 
same question must be asked with respect to equation (2.32). Let the correlators 
( ?( rl , t )  ?( r 2 ,  7)) correspond to thermoequilibrium fluctuations of the fields. Does 
the asymptotic stationary solution of equation (2.32) coincide with the thermodynamic 
density matrix? 

Despite the generality of the question, it is better to consider first a particular 
example, while the general proof will be given in the next section. We shall consider 
in this section the well studied problem of interaction with longitudinal phonons. The 
fluctuating potential in equation (2.1) is equal in this case to (see, e.g., Abrikosov et 
a1 1963, Kittel 1963) 

(3.1) 

The constant w is of the order of the Fermi energy for metals and the Debye energy 
for dielectrics. Displacements of the medium, G(r ,  t ) ,  are quantised and given by 

?( r, t )  = w div 6( r, t ) .  

(c :  exp(iw,t - iqr) + c, exp( -iw,t + iqr)) (3.2) 

where 0 is the volume of a pattern, p is the mass density of a medium, wq = slql (s is 
the velocity of sound), and c: and cq are creation and annihilation operators with 
commutator 

[ C,', c;] = aq,,. (3.3) 

A phonon system is assumed to be in thermodynamic equilibrium and has the Planck 
distribution function: 

(c:c,)= N, = [exp(phw,) - I]-' (3.4) 

and a particle is assumed to be free (i.e. V ( r )  = O  in equation (2.1)). 

the use of the identity 

exp(- iA(r ) t /h )  exp(iqr) exp(iA(r) t /  h )  

The corresponding correlators in equations (2.16) and (2.32) are calculated with 

=exp(iqr) exp(-i(h2q2/2m+ h q . p * / m ) t / h )  (3.5) 
where p" = -ihd/ar is the momentum operator (note that the equality (3.5) is valid only 
for U ( r )  = 0). Then equation (2.16) for the averaged $ function is given by 

d($(r, 1 ) )  -'h - d2($(r, t ) )  
d t  2m ar2 

d3q w2hq2 -$ lo' d.r I - -[ N, exp(iw,( t - 7 ) )  
2PWq 

x exp(-i(h2q2/2m + h q . p * / m ) ( t  - T ) / A ) + ( N ~ +  1) exp(-iw,(t - 7 ) )  

xexp(-i(h2q2/2m - h q . p * / m ) ( t - ~ ) / h ) l ( $ ( r ,  t ) ) .  (3.6) 
For large times f >> (U,)  - h /  kB T the upper limit of integration can be replaced approxi- 
mately by infinity and the asymptotic solution can be of the form 

( + ( r ,  t ) )=C(ap)exp(- i ip , t /h  - r , t+ ipr )  (3.7) 
P 
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where the function (a,)  is determined by the initial conditions. Using the formulae 

A 

where the operator P means that integration in the vicinity of a singularity must be 
performed in the principal-value sense, one obtains 

g, = ep + 
E, = p Z / 2 m  

(3 .9)  
(3.10) 

w2hq2 
rp  = f 3 d3Pt2pw,  

(3.12) 

where O(x) is the Heaviside step function. As has been pointed out above, the 
integration in equation ( 3 . 1 1 )  must be understood in the principal-value sense (in more 
realistic calculations one must also include finite damping of phonons). At zero 
temperature ( N, = 0) the expression for rp coincides with that obtained previously by 
Migdal (1958) with the use of Green functions. 

The corresponding equation (2.32) for the density matrix in this model is equal to 

+ r max{2m(s - \ P I /  m)/h,Ol 

x [exp(iw,(t-7)) exp(-i(s,+ h q . p * , / m ) ( t - . r ) / h )  

+exp(-iw,(t--)) exp(i(s,- h q . p * , / m ) ( t - ~ ) / h ) ]  

+ ( N , + 1 ) [ 1  -exp( idr2- r l ) )1  
x[exp(-iw,(t-T)) e x p ( - i ( E , - h q . P * , / m ) ( t - T ) / h )  

+ exp(iw,( t - 7 ) )  exp(i( E ,  + hq i2/ m ) (  t - T ) /  h ) ] }  

x (+*(rz, t )+(r ,  3 t ) )  ( 3 . 1 3 )  
where p*, = -iha/arl ,  s2 = -iha/ar2, E, = h2q2 /2m.  We describe here only the 
asymptotic (for t >> A / k , T )  evolution of plane wavepackets: 

(3.14) (+*(rzt t)+(r1, N = C  n , ( t )  exp(ip(r,-r2)/h) 
P 
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where n , ( t )  changes slowly on the timescale - h / k B T .  Using equation (3.8) it is easy 
to obtain 

x { b ( p - p ’ -  ~ q ) ~ ( E , - E , ~ - ~ ~ , ) [ n , ~ ( ~ ) ~ , - n , ( t ) ( ~ , + 1 ) 1  

+ S ( p  + hq - P ’ ) S ( E p  + hw, - E p ’ ) [ n p ’ (  t ) (  N, + 1) - n,( r)N,l} (3.15) 
which coincides with the quantum kinetic equation. Terms with ( N ,  + 1) correspond 
to emission of a phonon, while terms with N, describe absorption of a phonon. It is 
worth noting that renormalisation corrections to the energy spectrum of a particle (see 
equations (3.9)-(3.11)) mutually cancel exactly in the kinetic equation (3.15). For an 
energetic particle with lpl/ m >> s the transfers of momentum are small and equation 
(3.15) may be approximated by the Fokker-Planck equation in momentum space. The 
mean balance of energy transfer is given by 1 d 3 p n p ( t ) ~ ,  

a t  a t  

x hw, - Epf)hwq[np( t )Nq - n, , ( t ) (N ,+  l)]. (3.16) 
As is seen from equation (3.16), the energy is always lost at zero temperature ( N, = 0). 
This can be interpreted as ‘freezing’ of the plane wavepacket. The energy loss at zero 
temperature is due only to supersonic harmonics of the wavepacket with Ipl/m > s. 
However, this result does not exclude the possibility of non-trivial dynamics with 
respect to the centre of mass coordinate ( r l  + rJ/2 even at zero temperature (cf Caldeira 
and Leggett 1983a, Riseborough er a1 1985, Haake and Reibold 1985). However, this 
problem needs further detailed investigation. The equilibrium solution of equation 
(3.15) is equal to 

np = z-’ exp(-pp2/2m) (3.17) 
and exactly coincides with the thermodynamic density matrix. Here Z is the partition 
function. 

Comparing equations (3.12) and (3.15) we conclude that the dephasing time for 
the IC/ function is of the same order as the relaxation time of the distribution function. 

This particular example illustrates clearly the nature of coupling with an external 
medium and the character of the asymptotic evolution to thermoequilibrium. We shall 
show in the next section that such a situation holds generally. 

4. General proof of asymptotic evolution to thermoequilibrium 

4.1. Evolution of the density matrix in eigenstate representation 

The general proof of the asymptotic evolution of the equal time correlator 
( $ * ( r 2 ,  t ) + ( r l ,  t ) )  to the thermodynamic density matrix for a system coupled to given 
thermoequilibrium fluctuations of fields can be obtained by projection of equation 
(2.32) on the space of eigenfunctions of the Hamiltonian f i ( r )  (see equation (2.1)): 
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It is assumed that the eigenfunctions { $,,, ( r ) }  correspond to a complete orthonormal 
set. The spectrum is chosen for simplicity to be discrete (this means, e.g., that a free 
particle is confined in a large box, etc). Using the well known bra and ket representation 
for matrix elements of the products of operators, 

( n I A 4 m )  = C (nIffIj)(jIfiIm) 
I 

the final answer can be written in the form 

(4.2) 

(4.3) 

where 

We shall now consider the special case of coupling with a thermoequilibrium 
thermostat. 

According to the fluctuation-dissipation theorem (Kubo 1957, 1966, Martin and 
Schwinger 1959) the correlators ( Q( r l  , 7)  e( r 2 ,  t ) )  and ( Q( r2, t )  ?( rl , 7)) are related 
in thermoequilibrium by 

(Q(r2, t ) Q ( r l ,  d ) = ( Q ( r 1 ,  7)Q(r2, t + i P h ) )  

= exp(ipha/at)(i‘(r , ,  7)Q(r2,  t ) ) .  (4.6) 

Here P is, as usual, the reciprocal temperature times the Boltzmann constant. 
We should add to this general result two auxiliary equalities: 

( W 2 ,  OQ(r1, t ) ) = ( Q ( r 1 ,  t ) Q ( r * ,  f ) )  (4.7) 

Equality (4.7) corresponds to the causality principle, while equality (4.8) corresponds 
to the evenness of the quantum correlation function with respect to the difference of 
times ( t  - 7) under stationary conditions. 
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Using equations (4.6)-(4.8) and integrating by parts in the fourth and  fifth terms 
in equation (4.3), it can be directly checked that the asymptotic stationary solution is 
equal to 

a“’ mn = 6 mn e-PE% 12 (4.9) 
where Smn is the Kronecker symbol and 2 is the partition function 

= e-PEm. (4.10) 

This means that the asymptotic solution of equation (2.32) coincides with the thermody- 
namic density matrix (see, e.g., Landau and  Lifshitz 1969, Feynman 1972): 

m 

(4.11) 

We should stress that the stationary solution (4.9) is valid only for coupling with 
thermoequilibrium fluctuations. However, equation (4.3) can be applied also to 
arbitrary non-equilibrium Gaussian noise. 

It follows from this result that any non-trivial stationary dynamics at zero tem- 
perature is permissible if and  only if the ground state is degenerate. For example, this 
means that in order to obtain non-trivial Brownian motion the sizes of a system must 
satisfy the condition L >> A T  - h / ( m k , T ) ” *  (where L is the characteristic length of a 
box and A T  is the thermal wavelength of a particle) and, thus, the sizes of a system 
must tend to infinity at  zero temperature. In this limit the ground state will become 
degenerate in view of the exact translational invariance of the infinite system. 

4.2. Dispersion relationships for frequency shifts and broadenings 

In the limit t >> T,,,,, where T,,,, is the characteristic correlation time of a noise (for 
thermoequilibrium fluctuations T,,,, - A@), the system (4.3) can be simplified. Using 
Fourier transformation of the matrix elements (4.4) and (4.5) 

and (3.8) one obtains immediately: 

where 

(4.12) 

(4.13) 

(4.14) 

1 
2h BE,!,pq = - r ! 2 , p q (  ( Ep - E m  )/ 1. (4.15) 

If the broadenings Bmn,pq are considered as functions of ( Ep - Em)/ A then frequency 
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shifts and broadenings are related by (cf Riseborough et a1 1985) 

(4.16) 

It follows directly from definitions (4.4), (4.5) and (4.12) that 
r (+) = r(-) qp.  nm ( ). (4.17) 

On the other hand, the fluctuation-dissipation theorem (4.6) gives the relationship 
r!,,+;,pq(w) = ePhwrin;r,,,,(w). (4.18) 

Using equations (4.17) and (4.18) the asymptotic stationary solution (4.9) can be again 
easily reproduced. 

Although static thermoequilibrium properties are determined by unrenormalised 
energy levels, in view of the exact cancellation of shifts AE,,,,, for diagonal elements 
of the density matrix (see equation (4.9)), the dynamic properties will be determined 
by the off-diagonal elements a,,(t) with renormalised energies. These shifts in eigen- 
frequencies due to coupling with the thermostat can be measured, e.g., with the use 
of resonance response to a non-stationary external field (see 0 2.5). We should note 
also that in the Markovian approximation (2.39) frequency shifts are absent. 

m n m  

etc, do not depend on time and are conserved. 
Hence, one may always define 

ddr($*(r, f)$(r, t ) ) =  1. 5 (4.20) 

For such a normalisation, all equal time correlators are related by reduction equalities 
of the type 

($*(rn, t )  . . . $*(b,  t )$(rk- l~ t )  . . . cl/(rl 9 t ) )  

= ddr($*(rn, t )  . . . $*(rk, t)$*(r, t)$(r, t)$(rk-, , 2 ) .  . . $( r l ,  1 ) )  (4.21) 

which corresponds to the exact conservation of normalisation during stochastic 
evolution. In fact, this is a direct consequence of equation (2.1) with arbitrary potential 
V (  r, t ) .  The same identities will hold also for stationary thermoequilibrium correlators 
(cf equations (4.11) and (4.19)). 
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5. Two-level systems 

The system (4.3) can be applied to various problems related to transitions in a discrete 
spectrum under action of both thermoequilibrium and non-equilibrium fluctuations of 
fields. We shall consider in this section the most elementary two-level system, again 
coupled with phonons. The typical physical realisation of this situation is given by 
glasses at low temperatures (Phillips 1972, Anderson et a1 1972). 

Using equations (3.2), (4.3)-(4.5) one obtains after elementary calculation 

where 

N ( E )  = (eP" - I ) - '  
& = & - E 1  hw, = hslq/ = E. 

( 5 . 5 )  

(5.6) 

(5.7) 
We neglect for simplicity the renormalisation of energies and include only dephasing 
effects. Though the general solution of the system (5.1)-(5.4) can be found easily, the 
equations may be simplified even more as the following matrix elements are approxi- 
mately equal to each other with a good accuracy: 

( 5 . 8 )  

(5.9) 
Then diagonal and off-diagonal terms amn become decoupled. The solution can be of 
the form 

(5.10) 

r :4, ;, = r ',;,;: = r \$, = r ( E ) 
r l r )  

12.22 = r3!21. 

amn = a',.: + b,, ey' 
where the equilibrium density matrix a',.: is given by 

U:: = s,, e-PEcr/Z Z = l + e P F  ( 5 . 1 1 )  
(the energy is counted from the lower level E , )  and b,, depends on the initial conditions. 

(5.12) 

The decrement y'd' for the diagonal elements is equal to 

y ( d l ( E )  = - 2 r ( ~ ) ( 2 ~ ( 4 +  I ) =  -2y(0)(E) 
while the corresponding decrements for the off -diagonal elements are given by 

(5 .13)  
Thus the diagonal elements always relax to thermoequilibrium monotonically. The 
off-diagonal terms may oscillate if y'O'( E )  < E /  A. This corresponds to so-called Rabi 
oscillations and is typical of quantum two-level systems (see, e.g., Landau and Lifshitz 

y'O"'( E )  = -y'O'( E )  * ( y y  E )  - E 2 /  h2)"2. 
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1976). In the limit y ( " ( ~ )  >> ~ / h  one of the off-diagonal decrements becomes small 
( y ( O f f J =  ~ ~ / 2 h ~ y " ' ( ~ ) ) .  This reproduces the well known effect of suppression of 
tunnelling by intensive noise, which was first pointed out by Simonius (1978) (see also 
Pomeau and Pumir 1985). 

The observable macroscopic behaviour of the bulk pattern will be obtained by 
averaging the evolution equations on the distribution function of the level spacings 
g(E),  i.e. 

(ey(')') = lox d e  g ( ~ )  eY(')'. (5.14) 

I f  the wavelengths of the phonons are much more than the length.of localisation of 
the two-level system, lqll,Oc<< 1, then exp(iqr) in equation (5.5) can be expanded on 
the degrees of ( q r ) .  This corresponds to the multipole expansion. The matrix elements 

(5.15) 

will be equal to zero due to the parity selection rule. Then to the lowest order (see 
equations (5.5), (5.6), (5.8) and  (5.12)) one obtains T ( E ) O C E 5  and y ( d ) a E 4  at small 
energies. On the other hand, the density of states g(E) is usually not equal to zero at 
E = 0 (Phillips 1972, Anderson et a1 1972). In this case the averaging (5.14) gives the 
power law relaxation for large times for diagonal elements: 

(5.16) 
As has been shown in § 3, the same behaviour will be typical for the dephasing times 
of the localised wavefunctions, but the influence of the Simonius effect may partially 
change the situation. 

In the short wavelength limit, q ( r , - r 2 ) a  1, the matrix element r(&)aE3 and 
y ( d ) ( ~ ) K  E2kBT, which gives the relaxation law proportional to t - ' / * .  

We have described here only the relaxational process due to phonon emission. In  
experimental situations, other relaxational mechanisms dominate usually. They are 
related to the structural reconstructions due  to the overcoming of small energy barriers. 
The corresponding relaxation times are given by 

(5.17) 
where - h /  kB6, ( BD is the Debye temperature). After averaging on the level spacings, 
the asymptotic result is equal to 

)a (In i ) - ' .  (5.18) 
Comparing (5.16) and (5.18) we see that the asymptotic tails will be logarithmic at the 
largest times in accordance with experiment. A more detailed study of relaxation 
processes and  comparison with experiment is, however, outside the aim of this paper. 

dd r  +:(r)r+,,,( r )  = 0 I 

(exp( y'd'( E ) t ) )  a t-'14. 

T (  E )  = T~ ePE 

(e - ' I T ( €  1 

6. The quasiclassical Fokker-Planck equations 

At high temperatures the quantum effects become less important and motion of a 
particle will be quasiclassical. We shall show that in this limit the quantum equation 
(2.32) for the density matrix may be approximated by the quasiclassical Fokker-Planck 
equation. 

The first simplification: are related to the shortening of correlation times at high 
temperatures. If ~,-b,,b (H( r ) ) /  h then the corresponding correlator operators in 
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equation (2 .32)  can be expanded in terms of the parameter ( f i ( r )hCorr /h  =s 1, i.e. 

(Q(r2,  1 )  exp(- i2(r l ) ( t -  T) /h)C(r l ,  7) exp(i2(r l ) ( t -T)/f i ) )  

V R Chechetkin and V S Lutovinov 

= ( Q ( r 2 ,  t )Q( r l ,  7))--3Q(r2, t)[fi(rI) ,  Q(r l ,  7 ) l ~ t - T ) .  (6.1) 

The relationship between the asymmetric quantum correlator ( e( r 2 ,  t )  e( rl , T ) )  and 
the symmetric correlation function 

rS( r l  - r2, t - 7 )  =6((Q(r2, t ) Q ( r l t  T ) ) + ( Q ( r l ,  7)  c( r2 , t ) ) )  (6.2) 

is given by the fluctuation-dissipation theorem (equation (4.6)): 

(Q(r2 ,  t )Q( r l ,  T))=2(1+exp(-ipha/at))-'rs(rl-r2,  t - 7 )  

= ( ~ + f i p h  a/at)r , ( r l - r2 ,  t - T )  ( 6 . 3 )  

(6.4) 

The next simplifications can be obtained if the correlation length I,,,, of the 
correlator r,( rI - r 2 ,  t - T )  is much more than the length of localisation I,,, of a 
wavepacket, I,,,/ lcorr<< 1. Then all field correlators may be expanded in terms of ( rl - r2) 
by using the parameter I i o c /  I,,,,: 

or, analogously, 
<Q(r, ,  7 ) Q ( r 2 ,  r ) )=( l -$ iph  a/ar)rs(r l - r2 ,  f - T ) .  

( Q ( r 2 ,  t )Q( r l ,  7)) 

( Q ( r l  9 f ,  Q ( r l  7 ( r2J  - '11) 

Here summation is performed over all repeated indices. In the isotropic case one obtains 

where d is the dimensionality of space. 

straightforward algebra in the form 
Collecting all these equalities, the final result can be written after lengthy but 
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where 

y = PD"'/2 (6.10) 
A 

( a t l  a:) 
5 
m 

H'(r ,  , r2) =-( rl - r2) -+- (6.11) 

(6.12) 

Equation (6.8) coincides, up to the slight difference due to the term f i ' ( r l r  r2) ,  with 
the equations derived previously by Dekker (1977) and Caldeira and Leggett (1983a). 
There is, however, a certain difference in these correspondences. As has been pointed 
out in 0 1,  there is no principal non-equivalence between the Schrodinger equation 
and path-integral formulations. Hence, the correspondence between our result and 
that of Caldeira and Leggett (1983a) is obligatory. In both cases the equations are 
linear. On the other hand, Dekker (1977) has used a non-linear formalism and obtained 
an analogous equation within certain approximations of non-linear theory. It has been 
shown in these works that quasiclassical correspondence can be most naturally stated 
after transition to the Wigner distribution function: 

Equation (6.8) then transforms to 

In the limit h + 0 one can expand 

ih a a U ( R )  
2 a p  aR 

z U ( R ) + - - -  

(6.14) 

(6.15) 

and use 5 - D'P'Ph + 0 (see equation (6.12)). As can be seen, in this limit equation 
(6.14) is reduced to the classical Fokker-Planck equation, while equation (6.10) 
corresponds to the classical Einstein relationship. 

Equation (6.8) can be applied to various quasiclassical problems. For example, 
for the free particle ( V ( r )  = 0) it is easy to obtain the analogue of Ehrenfest's equations 
(see, e.g., Landau and Lifshitz 1976): 

-- a ( R 2 )  - (GR + R6) 
a t  

(6.16) 

(6.17) 

(6.18) 
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where 6 = ( - ih/m) alar is the velocity operator. The asymptotic evolution at large 
times is given by 

(6.19) 

Comparing this result with the expression for classical diffusion 

(R’)  = 2dD‘R’t (6.20) 

we obtain the correspondence 

(6.21) 

which, up to slight quantum corrections, coincides with classical theory. 
It is evident from the derivation of equation (6.8) that dissipation terms are due 

to the first non-vanishing corrections to the parameter (A( ~ ) ) T ~ J  h and will be equal 
to zero within the pure white-noise approximation. For this reason, equation (2.41) 
does not contain any dissipation effects. Acting on both sides of this equation by 
A(, , ) ,  tending r2 to rl and integrating over rl one obtains 

- 
a t  2m 

(6.22) 

which corresponds to stochastic pumping of energy only. The mean squared distance 
(R’) will in this case behave asymptotically according to the cubic law ( R 2 ) a  t 3  
(Jayannavar and Kumar 1982) rather than (R’)a t. 

Equation (6.8) can also be applied to tunnelling problems at high temperatures. 
Within such an approximation this problem has been studied by Biittiker et al (1983), 
Hanggi and Weiss (1984) and Mel’nikov (1985) (see also the review by Hanggi 1986). 

Finally, we should stress that the use of the quasiclassical Fokker-Planck approxi- 
mation depends physically on the presence of low-lying modes ensuring small transfers 
of energy and momentum (cf § 3) .  The last condition can be fulfilled often only within 
a certain range of temperatures and may be violated, e.g., at very low (or very high) 
temperatures. Therefore, attempts to obtain exact quantum expressions for the diffusion 
coefficient universally valid at all temperatures must be made with care. 

7. Multiparticle systems 

We shall show in this section how all results can be generalised to multiparticle systems. 
The corresponding Schrodinger equation is written in the form 

where 

(7.1) 

K 
V K ’ ( r 1 ,  . .  ., r K ;  t ) =  1 v ( r u ,  t ) .  

u = l  
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All K particles are taken for simplicity to be non-identical, while quantum effects 
related to identity and statistics will be discussed separately below. The correlations 
of the random potential V(,)(ra; t )  are expressed in terms of that of V(ra, t )  (see 
equations (2.2) and (2.3)): 

( V K J ( r ,  , . . .  , r K ;  t ) ) = O  (7.4) 

( V K J ( r { , . .  ., r k ;  t ' ) V K 1 ( r l , .  . ., r,; t ) )  

We give them first for c-number quantities. As the sum of Gaussian quantities again 
remains Gaussian (see, e.g., Feller 1970), it is evident that all generalisations required 
consist of a mere expansion of configurational space, while the main features of the 
derivation given in § 2 will be essentially the same. For example, the evolution equation 
for the averaged function is given by (cf equation (2.16)) 

-+ lof d7( V 'Ki( r , ,  . . . , r,; t )  exp(- i f i (K ' ( r l , .  . . , rK)(  1 - 7 ) / h  

x V K ) ( r l , .  . . , r K ;  7) e x p ( i f i ( K J ( r l , .  . . , r K ) ( t -  ~ ) / h ) ) ( $ ( ~ ~ ) .  (7 .6)  
As is seen from equations (7.2)-(7.6), if the correlation length of the potentials V(ro, t )  
is much more than the length of localisation of the K-particle system, then interference 
effects will dominate in equation (7 .6)  and the corresponding dephasing time will be 
proportional to K 2 ,  while in the opposite limit the stochastisation will be incoherent 
and the dephasing time will be proportional to K. 

The evolution of the density matrix is determined by the equation (cf equation 
(2.32)) 
a 

-($*(K1(ri , .  . . , rL; t ) $ ( K ) ( r l , .  . ., r,; t ) )  
a t  

= - ; (H * ( K )  ( r l , .  . . , r K )  - A ( K J ( r i , .  . . , r k ) )  

x ( + * ' K J ( r : r . .  . , rk; t ) $ ' K ' ( r l r . .  . , r,; t ) )  

- + l ~ ' d T ~ ( " ( , ) ( r I , . . . ,  r,; t )exp(- i f i 'K)( r l ,  . . . ,  r K ) ( f - 7 ) / h )  
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For the more general case of quantised fields Q(rm, 1 )  all operators 

( P K ) ( r ;  t )  exp(iA'K'(r ' ) ( t -  7) /h)Q'K)(r ' ,  7) exp(- iA'K)(r ' ) ( t -  T ) / f i ) y  

acting from left to right should be replaced by the operators 

Texp(-iA'K)(r ')( t-  T ) / h )  Q'K) ( r r ,  7) exp(iA'K'(r ' ) ( t -  T)/h)+(r,  t ) )  

acting from right to left. 
In the high-temperature limit, equation (7.7) can be approximated by the K-particle 

quasiclassical Fokker-Planck equation if the correlation time of field fluctuations is 
much less than the reciprocal characteristic eigenfrequencies of the Hamiltonian 
f i ( K ) ( r , ,  . . . , r K )  and the corresponding correlation length is much greater than the 
characteristic length of localisation of the K-particle system: 

-.(+*'K)(r{, . . . , r k ;  t )+ 'K ' ( r l , .  . . , r K ;  t ) )  
a 
a t  

1 
= - - ( i i ( K ) ( r l , .  . . , r K )  - i i ( K ) ( r : ,  . . . , r k )  

( r l , .  . . , rK; 4 , .  . . , r k ) )  

h 
+ & d K )  

x($*'K'(r{,  . . . , rk ;  t ) + ( K ) ( r l , .  . . , r K ;  t ) )  

-f-y [ (rb, - r,)(- 

- f ( r a  -r,) - - 

- 
Q,, 

ma l a  arb, m, l a )  ar, 

( l a  ma arm m, l a )  ar, 

i a  )] 'P) ma arb, m, arb 
- f (  ' -  ' i a  ra 

where 

(7.9) 

The coefficients D'p', y and 6 are defined by equations (6.9), (6.10) and (6.12). 
Equations (7.7)-(7.9) also retain their formal structure for a system of identical 

particles (see, e.g., Feynman 1972). The effects of quantum statistics (Bose or Fermi) 
must be taken into account by imposing additional external restrictions on the symmetry 
properties of the various correlators with respect to mutual permutations of coordinates 
of identical particles. For Bose statistics they must be symmetrical under this operation, 
while for Fermi particles they must be antisymmetrised. The statistics also restricts 
t t e  structure of corresponding expansions using eigenfunctions of the Hamiltonian 
H ' K ' ( r l , .  . . , r K )  (cf equation (4.1)). For example, in the case of Fermi statistics they 
must be taken in the form of Slater determinants, etc. It is evident, however, that 
proof given in 0 4 remains essentially unchanged. 



Quantum motion of particles in random dynamic j e lds  4779 

8. Stochastic evolution in the space of JI functions 

8.1. Continuous Fokker-Planck equation 

The stochastic evolution of a quantum system under action of a random potential can 
also be described with the use of an alternative approach. From the point of view of 
the complete set of states {+(r)} (we shall consider for simplicity the one-particle 
problem only) the subsequent stochastic evolution of a given initial state +,(r) is 
equivalent to continuous diffusion in the space of functions. Therefore the problem 
may be reformulated in terms of the continuous Fokker-Planck equation in the space 
of + functions. We first describe this equation using the more simple white-noise 
approximation (2.39). 

The corresponding equation is derived by continuous generalisation of the standard 
mathematical technique for multivariable problems with multiplicative noise (see, e.g., 
Kljatskin (1975) and appendix 1) and has the form 

at  

where 

(8.3) 

and S/S+(r), S/G$*(r) are functional derivatives. The action of the operator 
( S / S + (  r ) ) + (  r )  (and correspondingly ( S / S + * (  r))+*( r))  is equivalent to multiplication 
by a function $(r)  and subsequent functional differentiation. We used + ( r )  and the 
complex conjugate +*( r) as independent variables instead of the less convenient 
Re +( r )  and Im +(r).  The functional P{+(r) ,  +*(r); t }  describes the probability of 
finding a state + ( r )  at a moment t and is normalised to unity: 

(8.4) 

Here the integration is understood in the functional sense (see, e.g., Feynman and 
Hibbs 1965, Vasil’ev 1976, Itzykson and Zuber 1980). 

All equal time averages are equal by definition to 

( + ( r ,  9 t )  . * * +*(rn, 1 ) )  

= (+(rl)  . * . $*(r”); t )  

= j +( r , ) .  . . +*(rn)g{+(r) ,  +*(r); t}a+(r)B+*(r) .  (8.5) 

The corresponding evolution equations for averages (8.5) can be derived with the use 
of the trick introduced first by Feynman in quantum field theory (Feynman and Hibbs 
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(1965); similar methods have been used by Zubarev and Morozov (1983) in the study 
of hydrodynamic fluctuations and by Chechetkin and Lutovinov (1986) in the con- 
tinuous stochastic theory of birth and death processes). Replacing the variables +( r )  
and +*(r )  by 

+ ( r )  = & r ) +  v ( r )  +*(r )  = $ * m +  ??*(') (8.6) 

shifted on the fixed arbitrary functions v ( r )  and v * ( r )  one obtains, after expansion 
of the normalisation condition (8.4) into a functional Taylor series, the following set 
of equalities: 

J P { + ( r ) ,  +*(r ) ;  r ) a + ( r ) a + * ( r )  

= W G ( ~ ) +  q ( r ) ,  ~ * ( r ) +  q * ( r ) ;  t ~ a ~ ( r ) a ~ * ( r )  

= J" 9 { 6 ( r ) ,  $ * ( r ) ;  t I g J ( r ) g $ * ( r )  

(8 .7)  

In  view of the arbitrariness of the functions 7 ( r )  and v*( r )  this equality can be satisfied 
only if 

Similar equalities are valid for any functional @{+(r ) ,  + * ( r ) }  which does not grow too 
rapidly at infinity: 

& ( @ { + ( r ) ,  + * ( r ) } P { + ( r ) ,  +*(r ) ;  t } ) g + ( r ) W * ( r )  = . ' .  = 0. (8.9) 

This allows the use of simple functional integration by parts, i.e. 

(8.10) 

We have used in the integration the normalisation condition (8.4) and the equalities 

(8.1 1) 

(8.12) 
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Thus evolution equations for the averages (8.5) are obtained by (i) multiplication of 
both sides of equation (8.1) by $ ( r , )  . . . $*(r, ,);  (ii) functional integration over $ ( r )  
and + * ( r ) ;  and (iii) subsequent functional integration by parts with the use of the 
equalities (8.4), (8.9), (8.11) and (8.12). For example, one obtains (see equations 

a -( a t  j' $ ( i ) P { + ( r ) ,  $ * ( r ) ;  t } ) B + ( r ) B + * ( r )  

(8.1)-(8.3)) 

- a W i ,  t ) >  - 
at 

++ 11 ddr dd r r  I ' (o) (r -r ' ) f i (r ) f i (r f )P{+(r) ,  $ * ( r ) ;  t } )  

(8.13) 

which coincides with equation (2.40). 

equation of the form 
In the general case it is necessary to use a generalised continuous Fokker-Planck 

a P { + ( r ) ,  + * ( r ) ;  t>  
a t  

= i ~ { + ( r ) ,  + * ( r ) ;  t >  

d d r d d r ' j o ' d ; f ( r ,  t ;  r' ,  T ) f i ( r ) f i ( r ' ) P { + ( r ) , $ * ( r ) ;  t }  (8.14) 

where the operators i and f i ( r )  have been defined in equations (8.2) and (8.3), and 

i.(, t ;  r', T ) = ( v ( r ,  t )  e x p ( - - i & ( + ) 2 ( r f ) ( t - T ) / h ) V ( r ' ,  7) exp(is($)Ej(r')(t-T)/R)).  
(8.15) 

The operator f ( ,  t ;  r', T) must always be posed to the extreme left position, E ( $ )  is 
equal to +1 if the coordinate r' corresponds to that of $ ( r ' )  for the average 
(. . . @ ( r ' ) .  . .), and E ( + )  is equal to -1 if the coordinate r' corresponds to that of 
$*(r') for the average ( . . . +*(r ' )  . . . ). In the more exact form for quantised fields 
Q(r ,  t ) ,  the order of action should be changed from left to right in the last case (see 
discussion at the end of § 2). 

8.2. Thermoequilibrium distribution in the space of $ functions 

The thermoequilibrium distribution in the space of + functions can be most con- 
veniently derived with the use of the characteristic functional 

cPy'{A ( r ) ,  A *( r ) }  = (enp( i j' ddr(A *( PI$*( r )  + A (r)$( r ) ) ) ) .  (8.16) 
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a4 In @ y ) { A ( r ) ,  A*(*)} 
i4SA * ( r;) SA * ( r; ) S A  ( r2) 6A ( r ,  ) 

The corresponding correlators are obtained by the functional differentiation 

,, ( = ,, *( =o 

(8.17) 

In thermoequilibrium only correlators with equal numbers of +( r )  and $*( r )  will be 
not equal to zero due to phase fluctuations (cf Landau and Lifshitz 1969). For this 
reason the characteristic functional @y){A ( r ) ,  A * (  r ) }  may be written in the form 

In @ y ) { A ( r ) ,  A*(r)}  

(8.21) 

Analogously, one can obtain 

QdrS, r ; , r i ;  r3, r2, r1) 

= 4 r 3  c e-3PEJ +yc * S I  $3 4)  +I”( * I  ) +, (4 +, ( 4 +, (r1). (8.22) 

It can be proved (the argument is analogous to the Mayer theorem and is based on 
the theorem on the connectedness of the diagrammatic representation of the logarithm 
(see, e.g., Abrikosov et a1 1963, Vasil’ev 1976)) that the general structure of the functions 
O n ( ( , ,  . . . , ri ;  r,, . . . , r l )  is given by 

J 

Qfl(rL,. * * ,  4;  r,, * * 3 rl)  

= Y,,z-” e-@‘] +J”(ri)  . . . +J”(r;)+,(r,,), . . +,(rl) (8.23) 
I 

where { y,,} are some combinatoric coefficients. 
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Using standard methods (see, e.g., Vasil'ev 1976, Slavnov and Faddeev 1978, 
Itzykson and Zuber 1980 and appendix 2) the reciprocal Fourier transform can be 
written in the form 

xexp(-Z I ddr(+*(r )+q*(r ) )  e p f i ( r ) ( + ( r ) + v ( r ) ) ) l  q ( r ) = q * ( r ) = O  

(8.24) 

where N is a normalisation coefficient, A ( r )  has been defined in equation (2.1), and 

6 6 ~{%mGW)l 
= f I.. . I ddrk . .  . ddr: d d r n . .  . ddr, 

n = 2  

(8.25) 

This expression is simplified when the number of excited levels L is large ( L  >> 1). 
Then all functions Qn with n 5 2 will be small with respect to the parameter L-"+' 
and can be neglected. In this limit the thermoequilibrium distribution P r { + ( r ) ,  $*( r ) }  
is equal to 

(8.26) 

The normalisation factor N can be determined explicitly in the eigenfunction rep- 
resentation: 

= N exp -Z C e d E ~ a ~ a J )  n day daJ = 1 
I ( J  I 

or 

N = n (Z eP"1/2r). 
i 

(8.28) 

(8.29) 
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The averaging of any operator is quite standard: 

(8.30) 

and coincides with the general thermodynamic expression (see, e.g., Landau and 
Lifshitz 1969). Using the terminology of quantised fields the theory may be called 
‘free’ if YT{$(r), $*(r)} depends only on a bilinear combination of $(r)  and $*(r). 
We see that in the general case the effective field theory is not ‘free’ and is non-linear 
due to the effects of exact conservation of normalisation. The other interesting problem 
consists of the derivation of the distribution (8.24) in the form of a variational principle 
for effective entropy in the space of $ functions (which is also expressed by a continuous 
integral) subjected to certain additional restrictions due to conservation laws. 

The quantum Fokker-Planck equation (8.14) in the space of 4 functions contains 
quasidiffusive terms only. For this reason, by analogy with classical theory it is tempting 
to introduce special additional ‘viscous’ terms. Their structure is unambiguously 
determined as in classical theory by the thermoequilibrium distribution. The final 
result can be compactly written in the form 

E = &!? + f lo‘ dT 1 1 ddr  ddr’?( r, t ;  r‘, T )  
a t  

x ( B ( r ) p T B ( r o  + B(rF)gTB( r ) ) (Y; ’g )  (8.31) 

where PT is the thermoequilibrium distribution and the other notation is as in equations 
(8.1)-(8.4) and (8.15). The addition of such a ‘viscosity’ violates the superposition 
principle. We have succeeded in reproducing with this term a number of results from 
the various semiphenomenological approaches which are usually non-linear and where 
the superposition principle is not satisfied. The only function of such ‘viscous’ terms 
is to ensure evolution to thermoequilibrium. As has been proved in 0 4 such an evolution 
is obtained within linear theory without violation of the superposition principle. Thus, 
‘viscous’ terms in equation (8.31) are really superfluous and equation (8.14) gives the 
correct solution of the problem. 

9. Discussion 

To summarise, we should note that the Schrodinger equation with Gaussian dynamic 
fluctuating potentials gives a convenient model of an open quantum system. It is 
important that this formalism does not violate the superposition principle. An open 
system coupled with a thermoequilibrium environment will always evolve to a ther- 
modynamic density matrix in accordance with general principles. The evolution at 
high temperatures can be approximated by the quasiclassical Fokker-Planck equation. 
The formalism operates with directly observable quantities, e.g., the correlations of 
fluctuations of fields can be calculated with the well developed methods of Green 
functions. 
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The formalism developed gives a natural quantum generalisation of classical 
Langevin theory and inherits all its advantages and disadvantages. It describes a 
number of physically interesting situations but the corresponding formalism is not 
purely exact and exhaustive. As is seen from the example in 0 3, the Gaussian 
approximation is valid when direct emission-absorption processes dominate, while, 
e.g., the multiphonon processes are neglected. On the other hand, the formalism is 
not restricted by quasiparticle approximation of environmental fluctuations which may 
have, e.g., the Ornstein-Uhlenbeck form and, thus, may deviate greatly from quasipar- 
ticle behaviour. An analogous theory can be used for description of the dynamics of 
dilute spin systems in random fluctuating magnetic fields (Chechetkin and Lutovinov 
1987) and for describing fluctuating vector potentials. 

The model is applicable both for thermoequilibrium and non-equilibrium fluctu- 
ations. This last remark concerns artificial sources of stochastic radiation and turbulent 
media primarily. Thus, this model can be applied to a variety of problems in solid 
state and plasma physics. 
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Appendix 1 

For the convenience of a reader who is interested primarily in quantum mechanical 
applications we add here some elementary comments on the structure of equation 
(8.1). For specialists in stochastics we should note that the Stratonovich stochastic 
rule is used everywhere throughout the following discussion. 

Let us consider the one-dimensional stochastic equation 

( A l . l )  

where the Gaussian random force ( ( t )  is defined by the correlators 

( 5 ( t ) )  = 0 (A1.2) 

(5(t)5(t’)) = DS( t -  t ’ )  (A1.3) 

and f (x )  is a given function of x. After replacement of variables 

(A1.4) 

one obtains 

dy/dt  = [( t ) .  (A1.5) 

It is well known that the stochastic equivalent of equation (A1.5) is given by the 
Fokker-Planck equation: 

(A1.6) 
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Using conservation of normalisation: 

9 ( x ,  t )  dx = 9 ( y ,  t )  dy i i 
and equation (A1.4) this can be rewritten in the form 

(A1.7) 

(A1.8) 

Thus, we see that for multiplicative noise ( A l . l )  one should use the generalised operator 
(;/ax)f(x) whose action is equivalent to multiplication by the function f ( x )  and 
subsequent differentiation. If a given function q ( x )  is added to the right-hand side 
of ( A l . l )  then the corresponding ‘drift’ term -a/ax(q(x)9(x,  t ) )  must be added to 
equation (A1.6). Equations (8.1)-(8.3) generalise this simple one-dimensional problem 
in two aspects. First, they include two additional discrete variables related to Re +b 
and Im +b (or +b and +*) and, second, they include the continuous variable r related 
to the various positions in space. 

Appendix 2 

We give in this appendix the derivation of the equality (8.24). It is useful to rewrite 
the expression for the characteristic functional (8.16) in the form 

@ y ) { A ( r ) ,  A * ( r ) )  

= exp( -B{ -, s 7 1 )  6 

1877(r) 1877 ( r )  

x ex p( - I ddr ddr’ A *( r’)( $*( r’) +b( r ) )  T A  ( r )  

- i  1 d d r A ( r ) v ( r ) - i  5 ddrA*(r)q*(r))  1 (A2.1) 

where the notation is defined by equations (8.18), (8.19) and (8.25).  The reciprocal 
Fourier transform of the functional 

q l r ) = q * l r ) = O  

(A2.2) 

is given by 

(A2.3) 
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and is equal to 

where 

ddr" G (  r, r")( +*( r")+( r'))T = 6(  r - r') 
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(A2.4) 

(A2.5) 

and N is some constant. Using the direct definition of the density matrix (4.11) it is 
easy to see that 

(A2.6) G(r' ,  r )  = 26(r - r ' )  exp(pfi(r ) ) .  

Collecting equalities (A2.1)-(A2.6) one reproduces equation (8.24). 

Note added in proof: The more careful treatment (cf Kus and Wodkiewic 1982) shows that Wick's theorem 
is fulfilled only approximately in the interaction representation and the exact averaged expression must be 
written as 

If, however, the inequality 

is satisfied then 

and all other considerations remain unchanged. 
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